The Logic Resource Center
Public Alpha
Systems
Open options
Systems
The Logic Resource Center
Public Alpha
Systems
Open options
Systems
OLI
The Carnegie-Mellon University (CMU)
Online Learning Initiative
(OLI) system.
Start a Problem
→
Constants
¬
&
∨
→
↔
∀
∃
=
⊥
Example Formula
(
∀
x
)
(
∀
y
)
(
x
=
y
→
(
L
(
x
)
↔
L
(
y
)
)
)
Term Extensions
F
1
a
2
x
3
Allow Open Sentences
Yes
Known Issues
* The citation format is not correct in some cases - e.g. having a comma where OLI has a dash. * Citation order has not thoroughly been checked. * Error message terminology has not yet been customized for this system.
Problem Types
Point And Click Derivation
Experimental Point And Click Tableau
Experimental Free Tableau
Derivation Rules
Point And Click
Assum: Assumption
&I: Conjunction Introduction
&EL: Conjunction Elimination Left
&ER: Conjunction Elimination Right
∨IL: Disjunction Introduction Left
∨IR: Disjunction Introduction Right
∨E: Disjunction Elimination
¬I: Negation Introduction
⊥I: Falsum Introduction
¬E: Negation Elimination
⊥E: Falsum Elimination
→I: Conditional Introduction
→E: Conditional Elimination
↔I: Biconditional Introduction
↔EL: Biconditional Elimination Left
↔ER: Biconditional Elimination Right
∀I: Universal Introduction
∀E: Universal Elimination
∃I: Existential Introduction
∃E: Existential Elimination
=I: Identity Introduction
=E: Identity Elimination
Comm&: Conjunction Commutivity
Comm∨: Disjunction Commutivity
DeM: De Morgan
DSL: Disjunctive Syllogism Left
DSR: Disjunctive Syllogism Right
DNE: Double Negation Elimination
DNI: Double Negation Introduction
→DefI: Conditional Introduction From Material Definition
→DefE: Conditional Elimination For Material Definition
HS: Hypothetical Syllogism
MT: Modus Tollens
Trans: Transposition